61 research outputs found

    Exact, convergent periodic-orbit expansions of individual energy eigenvalues of regular quantum graphs

    Get PDF
    We present exact, explicit, convergent periodic-orbit expansions for individual energy levels of regular quantum graphs. One simple application is the energy levels of a particle in a piecewise constant potential. Since the classical ray trajectories (including ray splitting) in such systems are strongly chaotic, this result provides the first explicit quantization of a classically chaotic system.Comment: 25 pages, 5 figure

    Combinatorial identities for binary necklaces from exact ray-splitting trace formulae

    Full text link
    Based on an exact trace formula for a one-dimensional ray-splitting system, we derive novel combinatorial identities for cyclic binary sequences (P\'olya necklaces).Comment: 15 page

    Explicitly solvable cases of one-dimensional quantum chaos

    Get PDF
    We identify a set of quantum graphs with unique and precisely defined spectral properties called {\it regular quantum graphs}. Although chaotic in their classical limit with positive topological entropy, regular quantum graphs are explicitly solvable. The proof is constructive: we present exact periodic orbit expansions for individual energy levels, thus obtaining an analytical solution for the spectrum of regular quantum graphs that is complete, explicit and exact

    A topological paradigm for hippocampal spatial map formation using persistent homology

    Get PDF
    Extent: 14 p.An animal's ability to navigate through space rests on its ability to create a mental map of its environment. The hippocampus is the brain region centrally responsible for such maps, and it has been assumed to encode geometric information (distances, angles). Given, however, that hippocampal output consists of patterns of spiking across many neurons, and downstream regions must be able to translate those patterns into accurate information about an animal's spatial environment, we hypothesized that 1) the temporal pattern of neuronal firing, particularly co-firing, is key to decoding spatial information, and 2) since co-firing implies spatial overlap of place fields, a map encoded by co-firing will be based on connectivity and adjacency, i.e., it will be a topological map. Here we test this topological hypothesis with a simple model of hippocampal activity, varying three parameters (firing rate, place field size, and number of neurons) in computer simulations of rat trajectories in three topologically and geometrically distinct test environments. Using a computational algorithm based on recently developed tools from Persistent Homology theory in the field of algebraic topology, we find that the patterns of neuronal co-firing can, in fact, convey topological information about the environment in a biologically realistic length of time. Furthermore, our simulations reveal a “learning region” that highlights the interplay between the parameters in combining to produce hippocampal states that are more or less adept at map formation. For example, within the learning region a lower number of neurons firing can be compensated by adjustments in firing rate or place field size, but beyond a certain point map formation begins to fail. We propose that this learning region provides a coherent theoretical lens through which to view conditions that impair spatial learning by altering place cell firing rates or spatial specificity.Y. Dabaghian, F. Mémoli, L. Frank, G. Carlsso

    Spectra of regular quantum graphs

    Get PDF
    We consider a class of simple quasi one-dimensional classically non-integrable systems which capture the essence of the periodic orbit structure of general hyperbolic nonintegrable dynamical systems. Their behavior is simple enough to allow a detailed investigation of both classical and quantum regimes. Despite their classical chaoticity, these systems exhibit a ``nonintegrable analog'' of the Einstein-Brillouin-Keller quantization formula which provides their spectra explicitly, state by state, by means of convergent periodic orbit expansions.Comment: 32 pages, 10 figure

    Weyl formulas for annular ray-splitting billiards

    Full text link
    We consider the distribution of eigenvalues for the wave equation in annular (electromagnetic or acoustic) ray-splitting billiards. These systems are interesting in that the derivation of the associated smoothed spectral counting function can be considered as a canonical problem. This is achieved by extending a formalism developed by Berry and Howls for ordinary (without ray-splitting) billiards. Our results are confirmed by numerical computations and permit us to infer a set of rules useful in order to obtain Weyl formulas for more general ray-splitting billiards
    • …
    corecore